

Feb 19-8:47 AM

Eiven
$$f(x) = x^2 - 4x$$

1) $Y - Int \rightarrow x = 0$, $f(0) = 0^2 - 4(0) = 0 \Rightarrow (0,0)$

a) $x - Ints \rightarrow y = 0$, $f(x) = 0$, $x^2 + x = 0 \Rightarrow (0,0) \in (4,0)$
 $f(x-4) = 0$ $f(x) = 0$, $f(x) = 0$, $f(x) = 0$

3) Simplify, and evaluate $f(x) = \frac{f(x+h) - f(x)}{h}$ for $h = 0$.

$$f(x+h) - f(x) = \frac{(x+h)^2 - 4(x+h) - (x^2 + 4x)}{h}$$

$$= \frac{x^2 + 2xh + h^2 - 4xh}{h} = \frac{x^2 + 2xh + h^2 - 4xh}{h}$$

$$= \frac{x^2 + 2xh + h^2 - 4xh}{h} = \frac{x^2 + 2xh + h^2}{h}$$

$$= \frac{x^2 + 2xh + h^2 - 4xh}{h} = \frac{x^2 + 2xh + h^2}{h}$$

$$= \frac{x^2 + 2xh + h^2 - 4xh}{h} = \frac{x^2 + 4xh}{h}$$

$$= \frac{x^2 + 2xh + h^2 - 4xh}{h} = \frac{x^2 + 2xh + h^2}{h}$$

$$= \frac{x^2 + 2xh + h^2 - 4xh}{h} = \frac{x^2 + 4xh}{h}$$

$$= \frac{x^2 + 2xh + h^2 - 4xh}{h} = \frac{x^2 + 4xh}{h}$$

$$= \frac{x^2 + 2xh + h^2 - 4xh}{h} = \frac{x^2 + 4xh}{h}$$

$$= \frac{x^2 + 2xh + h^2 - 4xh}{h} = \frac{x^2 + 4xh}{h}$$

$$= \frac{x^2 + 2xh + h^2 - 4xh}{h} = \frac{x^2 + 4xh}{h}$$

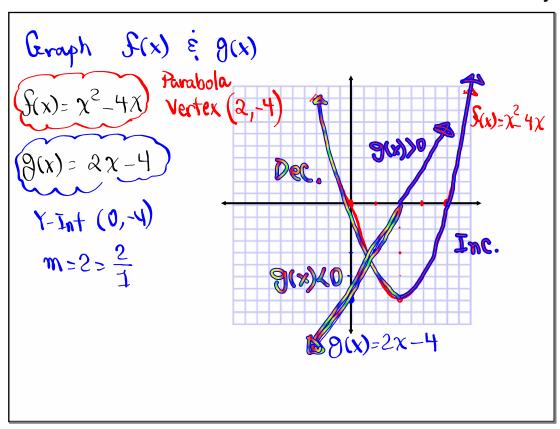
$$= \frac{x^2 + 2xh + h^2 - 4xh}{h} = \frac{x^2 + 4xh}{h}$$

$$= \frac{x^2 + 2xh + h^2 - 4xh}{h} = \frac{x^2 + 4xh}{h}$$

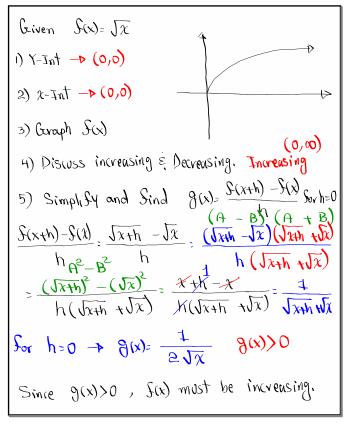
$$= \frac{x^2 + 2xh + h^2 - 4xh}{h} = \frac{x^2 + 4xh}{h}$$

$$= \frac{x^2 + 2xh + h^2 - 4xh}{h} = \frac{x^2 + 4xh}{h}$$

$$= \frac{x^2 + 2xh + h^2 - 4xh}{h} = \frac{x^2 + 4xh}{h}$$


$$= \frac{x^2 + 2xh + h^2 - 4xh}{h} = \frac{x^2 + 4xh}{h}$$

$$= \frac{x^2 + 2xh + h^2 - 4xh}{h} = \frac{x^2 + 4xh}{h}$$


$$= \frac{x^2 + 2xh}{h}$$

$$= \frac{x^2 + 2xh}{h}$$

Feb 9-8:48 AM

Feb 9-8:56 AM

Feb 9-9:02 AM

Criven
$$S(x) = \frac{1}{x}$$

1) Y-Int $\rightarrow x=0$ $\frac{1}{0}$ undesined \rightarrow None

2) $x-Int$. $\rightarrow y=0$ \rightarrow $S(x)=0$ \rightarrow $\frac{1}{x}=0$ \rightarrow None

3) Graph $S(x)$

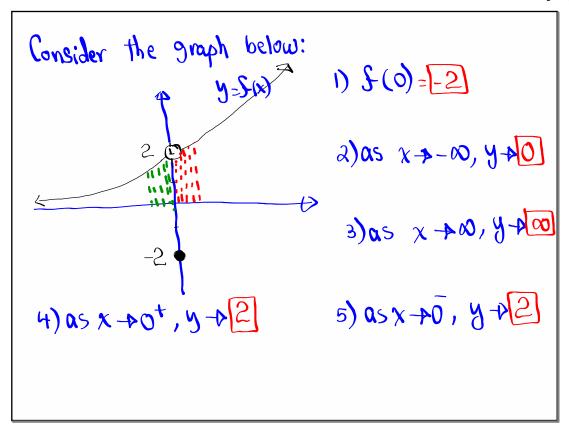
0s $x \rightarrow 0^{+}$, $y \rightarrow \infty$

0s $x \rightarrow 0^{-}$, $y \rightarrow \infty$

0s $x \rightarrow 0^{-}$, $y \rightarrow 0^{-}$

0s $x \rightarrow 0^{-}$, $y \rightarrow 0^{-}$

1) Discuss increasing \in Decreasing $(-\infty,0)$ \cup $(0,\infty)$


Feb 9-9:15 AM

5) Simplify and find
$$g(x) = \frac{f(x+h) - f(x)}{h}$$
 for h=0.

$$\frac{f(x+h) - f(x)}{h} = \frac{\frac{1}{x+h} - \frac{1}{x}}{\frac{x+h}{x+h}} = \frac{\chi(x+h) \cdot \frac{1}{x+h} - \chi(x+h) \cdot \frac{1}{x}}{h \cdot \chi(x+h)}$$

$$= \frac{\chi - (\chi+h)}{h \cdot \chi(x+h)} = \frac{\chi - \chi - \chi}{k \cdot \chi(x+h)} = \frac{-1}{\chi(x+h)}$$
For h=0 $\Rightarrow g(x) = \frac{-1}{\chi^2}$ gixto $g(x) < 0$ when $g(x) < 0$, $g(x) = \frac{1}{\chi^2}$ gixto $g(x) < 0$ when $g(x) < 0$, $g(x) = \frac{1}{\chi^2}$ gixto $g(x) < 0$ when $g(x) < 0$, $g(x) = \frac{1}{\chi^2}$ gixto $g(x) < 0$ when $g(x) < 0$, $g(x) = \frac{1}{\chi^2}$ gixto $g(x) < 0$ when $g(x) < 0$, $g(x) = \frac{1}{\chi^2}$ gixto $g(x) < 0$ when $g(x) < 0$, $g(x) = \frac{1}{\chi^2}$ gixto $g(x) < 0$ when $g(x) < 0$, $g(x) = \frac{1}{\chi^2}$ gixto $g(x) < 0$ when $g(x) < 0$, $g(x) = \frac{1}{\chi^2}$ gixto $g(x) < 0$ when $g(x) < 0$, $g(x) = \frac{1}{\chi^2}$ gixto $g(x) < 0$ when $g(x) < 0$, $g(x) = \frac{1}{\chi^2}$ gixto $g(x) < 0$ when $g(x) < 0$, $g(x) = \frac{1}{\chi^2}$ gixto $g(x) < 0$ when $g(x) < 0$, $g(x) = \frac{1}{\chi^2}$ gixto $g(x) < 0$ when $g(x) < 0$ and $g(x) < 0$ are $g(x) < 0$ and $g(x) < 0$ and $g(x) < 0$ are $g(x) < 0$ and $g(x) < 0$ and $g(x) < 0$ and $g(x) < 0$ are $g(x) < 0$ and $g(x) < 0$ and $g(x) < 0$ are $g(x) < 0$ and $g(x) < 0$ are $g(x) < 0$ and $g(x) < 0$ and $g(x) < 0$ are $g(x) < 0$ and $g(x) < 0$ are $g(x) < 0$ and $g(x) < 0$ and $g(x) < 0$ are $g(x) < 0$ and $g(x) < 0$ and $g(x) < 0$ are $g(x) < 0$ and $g(x) < 0$ and $g(x) < 0$ are $g(x) < 0$ and

Feb 9-9:22 AM

Feb 9-9:30 AM

Class QZ 1

Solve
$$3x^2 - 5x = 8$$
 Using the quadratic

formula. $3x^2 - 5x - 8 = 0$
 $0 = 3$
 $0 = 3$
 $0 = 5$
 $0 = 5$
 $0 = 5$
 $0 = 5$
 $0 = 5$
 $0 = 5$
 $0 = 5$
 $0 = 5$
 $0 = 5$
 $0 = 5$
 $0 = 5$
 $0 = 5$
 $0 = 5$
 $0 = 5$
 $0 = 5$
 $0 = 5$
 $0 = 5$
 $0 = 5$
 $0 = 5$
 $0 = 5$
 $0 = 5$
 $0 = 5$
 $0 = 5$
 $0 = 5$
 $0 = 5$
 $0 = 5$
 $0 = 5$
 $0 = 5$
 $0 = 5$
 $0 = 5$
 $0 = 5$
 $0 = 5$
 $0 = 5$
 $0 = 5$
 $0 = 5$
 $0 = 5$
 $0 = 5$
 $0 = 5$
 $0 = 5$
 $0 = 5$
 $0 = 5$
 $0 = 5$
 $0 = 5$
 $0 = 5$
 $0 = 5$
 $0 = 5$
 $0 = 5$
 $0 = 5$
 $0 = 5$
 $0 = 5$
 $0 = 5$
 $0 = 5$
 $0 = 5$
 $0 = 5$
 $0 = 5$
 $0 = 5$
 $0 = 5$
 $0 = 5$
 $0 = 5$
 $0 = 5$
 $0 = 5$
 $0 = 5$
 $0 = 5$
 $0 = 5$
 $0 = 5$
 $0 = 5$
 $0 = 5$
 $0 = 5$
 $0 = 5$
 $0 = 5$
 $0 = 5$
 $0 = 5$
 $0 = 5$
 $0 = 5$
 $0 = 5$
 $0 = 5$
 $0 = 5$
 $0 = 5$
 $0 = 5$
 $0 = 5$
 $0 = 5$
 $0 = 5$
 $0 = 5$
 $0 = 5$
 $0 = 5$
 $0 = 5$
 $0 = 5$
 $0 = 5$
 $0 = 5$
 $0 = 5$
 $0 = 5$
 $0 = 5$
 $0 = 5$
 $0 = 5$
 $0 = 5$
 $0 = 5$
 $0 = 5$
 $0 = 5$
 $0 = 5$
 $0 = 5$
 $0 = 5$
 $0 = 5$
 $0 = 5$
 $0 = 5$
 $0 = 5$
 $0 = 5$
 $0 = 5$
 $0 = 5$
 $0 = 5$
 $0 = 5$
 $0 = 5$
 $0 = 5$
 $0 = 5$
 $0 = 5$
 $0 = 5$
 $0 = 5$
 $0 = 5$
 $0 = 5$
 $0 = 5$
 $0 = 5$
 $0 = 5$
 $0 = 5$
 $0 = 5$
 $0 = 5$
 $0 = 5$
 $0 = 5$
 $0 = 5$
 $0 = 5$
 $0 = 5$
 $0 = 5$
 $0 = 5$
 $0 = 5$
 $0 = 5$
 $0 = 5$
 $0 = 5$
 $0 = 5$
 $0 = 5$
 $0 = 5$
 $0 = 5$
 $0 = 5$
 $0 = 5$
 $0 = 5$
 $0 = 5$
 $0 = 5$
 $0 = 5$
 $0 = 5$
 $0 = 5$
 $0 = 5$
 $0 = 5$
 $0 = 5$
 $0 = 5$
 $0 = 5$
 $0 = 5$
 $0 = 5$
 $0 = 5$
 $0 = 5$
 $0 = 5$
 $0 = 5$
 $0 = 5$
 $0 = 5$
 $0 = 5$
 $0 = 5$
 $0 = 5$
 $0 = 5$
 $0 = 5$
 $0 = 5$
 $0 = 5$
 $0 = 5$
 $0 = 5$
 $0 = 5$
 $0 = 5$
 $0 = 5$
 $0 = 5$
 $0 = 5$
 $0 = 5$
 $0 = 5$
 $0 = 5$
 $0 = 5$
 $0 = 5$
 $0 = 5$
 $0 = 5$
 $0 = 5$
 $0 = 5$
 $0 = 5$
 $0 = 5$
 $0 = 5$
 $0 = 5$
 $0 = 5$
 $0 = 5$
 $0 = 5$
 $0 = 5$
 $0 = 5$
 $0 = 5$
 $0 = 5$
 $0 = 5$
 $0 = 5$
 $0 = 5$
 $0 = 5$
 $0 = 5$
 $0 = 5$
 $0 = 5$
 $0 = 5$
 $0 = 5$
 $0 = 5$
 $0 = 5$
 $0 = 5$
 $0 = 5$
 $0 = 5$
 $0 = 5$
 $0 = 5$
 $0 = 5$
 $0 = 5$
 $0 = 5$
 $0 = 5$
 $0 = 5$
 $0 = 5$
 $0 = 5$
 $0 = 5$
 $0 = 5$
 $0 = 5$
 $0 = 5$
 $0 = 5$
 $0 = 5$
 $0 = 5$
 $0 = 5$
 $0 = 5$
 $0 = 5$
 $0 = 5$
 $0 = 5$
 $0 = 5$
 $0 = 5$
 $0 = 5$
 $0 = 5$
 $0 = 5$
 $0 = 5$
 $0 = 5$
 $0 = 5$
 $0 = 5$
 $0 = 5$
 $0 = 5$
 $0 = 5$
 $0 = 5$
 $0 = 5$